As shown in the figure above, aged neurons have fewer dendritic spines, which also have deformed morphology. These features manifest as diminished synaptic function and plasticity, which result in reduced electrophysiological and brain activities.
“Brain degeneration” describes the symptoms that occur when brain functions decline but does not necessarily describe a particular disease. In the past few years, the term “brain degeneration” has entered widespread usage in Hong Kong, leaving “dementia” or “Alzheimer’s disease” to more specifically refer to patients with a given disease. Meanwhile, the gradual decline in memory and learning, which affects a person’s daily functioning, is termed “cognitive impairment,” which is only one of many manifestations of brain degeneration (others include motor dysfunction).
According to the latest neuroscience research findings, synaptic plasticity decreases along with impaired synaptic functioning in the early stage of brain degeneration. Brain function is regulated by the strength of the signal transmitted between neurons. The strength of these signals depends on the functional regulation of synapses, and synaptic function is affected by the number and shape of dendritic spines on neurons. “Long-term potentiation” is the electrophysiological response that indicates synaptic plasticity upon stimulation. Accordingly, long-term potentiation is significantly reduced in experimental models of cognitive impairment.
The causes of brain degeneration and reduced synaptic plasticity are not fully understood. Nevertheless, they are known to be related to aging, genetics, and environmental factors. One of the most well-known causative agents of Alzheimer’s disease is soluble amyloid-beta (Aβ) oligomers. Current neuroscience research shows that Aβ oligomers inhibit synaptic plasticity and reduce the electrophysiological response of neurons and thus the long-term potentiation effect, thereby impairing brain activity.
When the amount of Aβ oligomers continues to increase, they tend to aggregate and form plaques in brain tissue. The latest findings indicate that Aβ plaques are already visible in the brain scans of 20–40% of elderly people with normal cognitive abilities. Therefore, by the time a person outwardly shows reduced cognitive and memory abilities, a large quantity of Aβ has already accumulated in the brain and neuronal cells have been damaged. This results in the shrinking of brain tissue. When a person is clinically diagnosed as having Alzheimer’s disease, Aβ accumulation, brain cell damage, and tissue shrinkage have already peaked, and cognitive and memory abilities are significantly affected. This impaired brain function eventually worsens and affects other body functions. Thus, the nature of Alzheimer’s disease leaves a narrow window of opportunity for treatment. Given the delay between the onset of Alzheimer’s disease and the appearance of symptoms, it is important for people to be aware of the importance of early prevention, delaying the occurrence of symptoms, and maintaining physical and mental health. Based on our understanding of Alzheimer’s disease, a method that effectively reshapes synaptic plasticity and enhances functioning could improve cognitive and memory abilities. Cogniherbs® target the root causes of synaptic plasticity impairment. Cogniherbs® have been demonstrated to effectively improve the neurotransmission of synapses in an experimental model of cognitive dysfunction, reverse the effects of brain degeneration factors, and increase brain activity, thereby reducing brain degeneration.
The most common cognitive disorders are related to Alzheimer’s disease, vascular dementia, frontotemporal dementia, Lewy body dementia, and Parkinson’s disease-related dementia.